Lab works based CSE 4405.
Course Catalogue
simple graphs, digraphs, subgraphs, vertex-degrees, walks, paths and cycles; Trees, spanning trees in graphs, distance in graphs; Complementary graphs, cut-vertices, bridges and blocks, k-connected graphs; Euler tours, Hamiltonian cycles, Chinese Postman Problem, Traveling Salesman Problem; Chromatic number, chromatic polynomials, chromatic index, Vizing’s theorem, planar graphs, perfect graphs.
Simple graphs, digraphs, subgraphs, vertex-degrees, walks, paths and cycles; Trees, spanning trees in graphs, distance in graphs; Complementary graphs, cut-vertices, bridges and blocks, k-connected graphs; Euler tours, Hamiltonian cycles, Chinese Postman Problem, Traveling Salesman Problem; Chromatic number, chromatic polynomials, chromatic index, Vizing’s theorem, planar graphs, perfect graphs.
Recurrent problems; Manipulation of sums; Number theory; Special numbers; Generating functions. Random variables; Stochastic process; Markov chains: discrete parameter, continuous parameter, birth-death process; Queuing models: birth-death model, Markovian model, open and closed queuing network; Application of queuing models.
Topics in surface modeling: b-splines, non-uniform rational b-splines, physically based deformable surfaces, sweeps and generalized cylinders, offsets, blending and filleting surfaces. Non-linear solvers and intersection problems. Solid modeling: constructive solid geometry, boundary representation, non-manifold and mixed-dimension boundary representation models, octrees. Robustness of geometric computations. Interval methods. Finite and boundary element discretization methods for continuum mechanics problems. Scientific visualization. Variational geometry. Tolerances. Inspection methods. Feature representation and recognition. Shape interrogation for design, analysis, and manufacturing. Involves analytical and programming assignments.
As necessary.
Signal and random processes; Review of Fourier Transform; Hilbert Transform, continuous wave modulation: AM, PM, FM; Sampling theorem; Pulse modulation: PAM, PDM, PPM, PCM, companding, delta modulation, differential PCM; Multiple access techniques: TDM, FDM; Digital modulation: ASK, PSK, BPSK, QPSK, FSK, MSK, constellation, bit error rate (BER); Noise; Echo cancellation; Intersymbol Interference; Concept of channel coding and capacity. Synchronous and asynchronous communications; Hardware interfaces, multiplexers, concentrators and buffers; Communication mediums and their characteristics; Data communication services: SMDS and ATM; Error control codes: linear block codes, cyclic codes, MLDC codes, convolution codes, Trellis code modulation; Digital switching: space and time division switching; Radio system design; Fiber optics communication: transmitter, receivers, network components, WDM; Line coding, trunks, multiplexing, switching, ATM switches; Satellite communications: frequency bands and characteristics, types of satellites, transmission impairments, capacity allocation; Multiple access techniques.
Lab works based CSE 4415.
Introduction to Internet in general and Internet of Things: layers, protocols, packets, services, performance parameters of a packet network as well as applications such as web, Peer-to-peer, sensor networks, and multimedia. Transport services: TCP, UDP, socket programming; Network layer: forwarding & routing algorithms (Link, DV), IP-addresses, DNS, NAT, and routers; Local Area Networks, MAC level, link protocols such as: point-to-point protocols, Ethernet, WiFi 802.11, cellular Internet access, and Machine-to-machine; Mobile Networking: roaming and handoffs, mobile IP, and ad hoc and infrastructure less networks; Real-time networking: soft and real time, quality of service/information, resource reservation and scheduling, and performance measurements; IoT definitions: overview, applications, potential & challenges, and architecture; IoT examples: Case studies, e.g. sensor body-area-network and control of a smart home.